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Here, N is the Eshelby tensor; 
the unit tensor. 

The elastic characteristics of heterogeneous materials have been the subject of numerous 
experimental and theoretical studies for many years. This is not surprising, since they are 
among the most important characteristics of structural (especially composite) materials and 
to a large extent determine their service properties. 

However, it should be noted that many of the phenomenological and theoretical methods 
of evaluating the elastic characteristics of heterogeneous materials from their structural 
features and properties of the constituent phases are often based on formal assumptions of 
a mathematical nature which facilitate the solution of equations that take into account the 
complex character of interaction of the strutural elements of the material. In this case, 
there is no clear relationship between the simplifying assumptions used and the corresponding 
changes in the physical model of the heterogeneous system. Nonetheless, different assump- 
tions sometimes lead to the same results. This is obviously fairly unambiguous evidence of 
the equivalence of the physical models - an equivalence which is not always taken into con- 
sideration in the choice of the theoretical relations used to study the elastic character- 
istics of actual heterogeneous materials with a statistical and matrix structure. 

We will show that many of the best-knownresults can be obtained from the solution of the 
Eshelby problem [I] on the deformation of an elastic exogeneous inclusion in an infinite uni- 
form matrix. Let E be the uniform strain of a medium whose properties are characterized 
by the elastic moduli tensor c m. Then in accordance with the Eshelby solution, the strain 
of a single inclusion 

gf = {I + N : [(cm) -1 : ~ . ' I I }  - 1 : 7 .  (1 )  

C I is the tensor of the elastic moduli of the inclusion; I is 

If the material of the matrix and inclusion is isotropic and if the form of the latter 
is spherical, then the tensor N will also be isotropic. In this case, we can use the repre- 
sentation [2] 

( c ~ ) - 1 =  t V + - / - t  D, c j = 3 . K ] V + 2 ~ I D ,  
3K in  2p, TM 

N =  3Kin - 6 (Kin+ 2~m') D, 
3K m -~ 4~ m V .~ 5 (3K m .+ 4~ TM) 

where K m(f), ~m(f) are the bulk and shear moduli of the matrix and inclusion; V and D are the 
volumetric and deviatoric components of the unit tensor (I = V~D). 

Using such a representation for the tensors in conjunction with Eq. (i), we can write the 
following for the strain of an exogeneous inclusion placed in an infinite medium 

= i+~(KJ- -K")  + ~+b(~J - -~  TM) (2) 

(a= a b= 6(a:"+2r"~) ) 
aK = +4~  = '  5~m (3K m q- 4~ m) �9 

Now we u s e  Eq. (2 )  t o  d e t e r m i n e  t h e  e f f e c t i v e  e l a s t i c  c h a r a c t e r i s t i c s  o f  t h e  t w o - p h a s e  
h e t e r o g e n e o u s  s y s t e m :  L e t  t h e  e l a s t i c  c h a r a c t e r i s t i c s  o f  t h e  f i r s t  p h a s e  be  d e t e r m i n e d  by 
t h e  i s o t r o p i c  t e n s o r  c(1), and l e t  t h e  c h a r a c t e r i s t i c s  o f  t h e  s e c o n d  be d e t e r m i n e d  by t h e  t e n -  
s o r  c(2). 

Sverdlovsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. i, 
pp. 96-100, January-February, 1990. Original article submitted August 15, 1988. 

90 0021-8944/90/3101-0090512.50 �9 1990 Plenum Publishing Corporation 



To establish the effective properties of these systems, we will examine a uniform com- 
parison body with the elastic characteristics K c and ~c- The comparison body is distin- 
guished by the fact that the elastic field in the single spherical inclusion - with the 
elastic characteristics of a separate phase component - is an average over the volume oc- 
cupied by the given phase in the heterogeneous material. Here, of course, we assume that 
the strain of the comparison body and the macrostrain of the actual system coincide, i.e., 
on the average the elastic behavior of the phase components is the same as in the corre- 
sponding isolated inclusions placed alternately in the homogeneous medium. Then, in accor- 
dance with Eq. (2), we can write the following for the mean strain tensors in the first and 
second phases 

[ v 
e{ = i @a c(K i - K c )  

Here, as previously [see Eq. (2)], 

D ] :<e>,  i =  t, 2. ( 3 )  
+ i + ~c (th - t~c) 

3 b e =  6(Ko+2~c)  ( 4 )  
ac ---- 3K c + 4~c, 5~ c (3K6 + 4bc), 

F o r  t h e  mean a v e r a g e  d e f o r m a t i o n  i n  h e t e r o g e n e o u s  s y s t e m s ,  a l s o ,  i t  h o l d s  f o r  t h e  e q u a -  
t i o n  

(~ > - -  c1~1 § c ~  ( 5 )  

( c  1 and c 2 a r e  t h e  vo lume c o n t e n t s  o f  t h e  m a t e r i a l s  of  t h e  f i r s t  and s e c o n d  p h a s e s  i n  t h e  
h e t e r o g e n e o u s  m a t e r i a l ) .  I n s e r t i n g  Eq. (3 )  i n t o  Eq. ( 5 ) ,  we have  

r C'2 
t + a  c(K 1-Kc) ~ iWa c(K 2 - K r  i, 

( 6 )  
gl C2 = 

i + b e ( ~ 1 -  ~e) + t + b c ( ~  - ~0) 1. 

The e f f e c t i v e  e l a s t i c  c h a r a c t e r i s t i c s  o f  t h e  h e t e r o g e n e o u s  t w o - p h a s e  m a t e r i a l  (c*) a r e  
easily found from the condition 

<O ) ~ Cl(Y 1 + C2[~2, (7) 

where ~ and us are the tensors of the mean stresses over the volumes of the heterogeneous 
material occupied by the first and second phases, respectively. With satisfaction of the 
generalized Hooke's law, Eq. (7) can be rewritten in the following equivalent form: 

C* : <E ) = C (I) : elC 1 -~  C (2) : ~,2C2. ( 8 )  

With  a l l o w a n c e  f o r  t h e  e x p a n s i o n s  cO) = 3K~V + 2~1 D, c (2) ---- 3K2V'+  2~2 D, c* ---- 3K*V + 29"D 
and Eq. ( 3 ) ,  we can  u s e  Eq. (8 )  t o  f i n d  

K S ~ KlCl Kzc 2 
i + a  c(K~-Kc) + i + a  c(g 2 - K c ) '  (9) 

~1Cl ~2c2 
~t*= 1+b c(~l- t tc)  + !+b e(~2-~c)" 

The e f f e c t i v e  b u l k  modulus  K* and s h e a r  modulus  ~* c o m p l e t e l y  c h a r a c t e r i z e  t h e  e l a s t i c  p r o p e r -  
t i e s  o f  t h e  i s o t r o p i c  h e t e r o g e n e o u s  m a t e r i a l .  

P e r f o r m i n g  i d e n t i c a l  t r a n s f o r m a t i o n s  i n  Eqs .  (9 )  and a l l o w i n g  f o r  (4 )  and ( 6 ) ,  we f i n d  
e x p r e s s i o n s  f o r  t h e  b u l k  and s h e a r  m o d u l i :  

ClC 2 ( g  1 -- K~) z 
K* = <K> 4 

y ~c + czK~ + c~K~ ( i 0 ) 

~t* = <~t> - -  ~e (9Kc + 8~c) 

H e r e ,  <K> and <U> a r e  t h e  mean v a l u e s  o f  t h e  b u l k  and s h e a r  e l a s t i c  m o d u l i  o f  t h e  h e t e r o -  
g e n e o u s  m a t e r i a l :  <K> = czKz + c : K : ,  <U> = czuz  + c : ~  2. 

E q u a t i o n s  (10 )  c o i n c i d e  w i t h  t h e  f o r m u l a s  o f  t h e  g e n e r a l i z e d  s i n g u l a r  a p p r o x i m a t i o n  i n  
[ 2 ] .  These  f o r m u l a s  can  be u s e d  t o  o b t a i n  many o f  t h e  w e l l - k n o w n  s o l u t i o n s  i f  t h e  c h a r a c t e r -  
i s t i c s  o f  t h e  c o m p a r i s o n  body  a r e  r e g a r d e d  as  v a r i a b l e s .  H e r e ,  w i t h  a change  i n  t h e  c h a r -  
a c t e r i s t i c s  o f  t h e  c o m p a r i s o n  b o d y ,  t h e  s o l u t i o n s  t h a t  a r e  o b t a i n e d  a r e  r e d u c e d  t o  a fo rm 
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corresponding to different physical models of the heterogeneous material. For example, if we 
put K c = K* and Pc = ~*, we arrive at the self-consistent solution in [3] for symmetrical 
statistical systems with interpenetrating components. The solution proposed above is nothing 
more than a generalization of this approach due to the simultaneous use of additivity equations 
for the averaged fields of the microstrains and microstresses. Also, as was shown in [2], 
if we assume that K c = 0, ~c = 0, and K c = ~, ~c = ~, we obtain the lower and upper bounds of 
the effective characteristics corresponding to the simplest models of a heterogeneous material 
with a uniform stress and strain distribution: 

<K-! ~-! ~ K* ~ (K)~ (~-1)-I ~ ~* ~ (~>. 

I f  we t h e n  pu t  K c = K1, ~c = Pl and K c = K2, Pc = ~2, we f i n d  t h e  H a s h i n - S t r i c k m e n  
variational principles [4]: 

Cl (K1 - g2) c~ (g____22 = El) ~ K* ~ K 2 + 
K1 + l +  clal(g 2 : E l )  i + e~a 2 (g 1 -K~)  ' 

where K 2 > K 1 and P2 > ~z. 

As was n o t e d  in  [ 2 ] ,  t h e s e  e q u a t i o n s  - c o r r e s p o n d i n g  to  b o u n d a r y  v a l u e s  o f  t h e  e l a s t i c  
c h a r a c t e r i s t i c s  - can be used  t o  f i n d  t h e  e f f e c t i v e  e l a s t i c  c h a r a c t e r i s t i c s  o f  m a t r i x  s y s t e m s .  

F i n a l l y ,  w i t h  K c = <K> and Pc = <P>, Eqs.  (10)  become e x p r e s s i o n s  c o r r e s p o n d i n g  t o  t h o s e  
o b t a i n e d  w i t h i n  t h e  f ramework o f  t h e  methods  o f  s i n g u l a r  a p p r o x i m a t i o n  [ 2 ] ,  s t r o n g  i s o t r o p y  
[ 5 ] ,  c o n d i t i o n a l  moments [ 6 ] ,  and l i m i t i n g  l o c a l i t y  [ 7 ] .  Th i s  once  a g a i n  u n d e r l i n e s  t h e  
e q u i v a l e n c e  o f  t h e  p h y s i c a l  models  c o r r e s p o n d i n g  to  d i f f e r e n t  m a t h e m a t i c a l  s o l u t i o n s .  

An i l l u s t r a t i o n  o f  t h e  use  o f  t h e  above r e l a t i o n s  i s  g i v e n  by t h e  r e s u l t s ,  shown in  
F i g .  1, o f  c a l c u l a t i o n  o f  t h e  c o n c e n t r a t i o n  dependences  o f  t h e  bu lk  ( a )  and s h e a r  (b)  modul i  
of  a W-A1 c o m p o s i t e  w i t h  d i f f e r e n t  c o m p a r i s o n - b o d y  c h a r a c t e r i s t i c s :  1) K c = ~, ~c = ~; 2) 
Kc = Kz, ~c = ~z; 3) K c = K*, ~c = ~*; 4) K c = K2, Pc = ~2; 5) K c = 0, ~c = 0. I t  can be 
seen  from t h e  f i g u r e  t h a t  t h e  p a t h s  o f  t h e  c o n c e n t r a t i o n  c u r v e s  d i f f e r  a p p r e c i a b l y ,  depend ing  
on t h e  c h o i c e  o f  p h y s i c a l  model f o r  t h e  m a t e r i a l  (which  i s  d e t e r m i n e d  by t h e  a s s i g n m e n t  o f  
t he  c o r r e s p o n d i n g  c h a r a c t e r i s t i c s  o f  t h e  c o m p a r i s o n  b o d y ) .  Here ,  we s h o u l d  p o i n t  ou t  t h e  
dependence  o f  t h e  e l a s t i c  p r o p e r t i e s  on t h e  volume c o n t e n t  o f  t u n g s t e n  in  t h e  c o m p o s i t e  ( c l )  
found f o r  t h e  model in  t h e  form o f  a s t a t i s t i c a l  s y s t e m  of  g e o m e t r i c a l l y  e q u a l  phase  compo- 
n e n t s  (K c = K*, ~c = ~*) .  I n  t h e  c a s e  o f  a low volume c o n c e n t r a t i o n  o f  t u n g s t e n ,  when t h i s  
e q u a l i t y  i s  n o t  m a n i f e s t ,  t h e  c a l c u l a t e d  v a l u e s  a r e  c l o s e  t o  t h e  c o r r e s p o n d i n g  v a l u e s  f o r  a 
sys t em w i t h  an aluminum m a t r i x  ( c u r v e  4 ) .  S i n c e  t u n g s t e n  o b v i o u s l y  becomes t h e  m a t r i x  phase  
a t  c 1 § 1, t h i s  i s  r e f l e c t e d  on t h e  g raph  by t h e  c o n v e r g e n c e  o f  c u r v e s  2 and 3. 

In the case of heterogeneous materials containing inclusions of ellipsoidal or cylindri- 
cal form, the scheme used to calculate the effective elastic characteristics remains the 
same. However, in this case the Eshelby tensor will not be characterized by two constants, 
as was the tensor of the effective elastic characteristics of the heterogeneous system exam- 
ined above. Thus, for a fiber composite, the matrix of the elastic moduli will contain five 
unknown constants. In accordance with Eqs. (2) and (8), the tensor of the effective elastic 
moduli is found from the relation 

- -  Z {i  + N:  - -  I]}  
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NUMERICAL INVESTIGATION OF RECIRCULATION FLOWS IN A THREE-DIMENSIONAL CAVERN 

V. M. Belolipetskii and V. Yu. Kostyuk UDC 519.6:532.5 

The problem of viscous incompressible fluid flow in a three-dimensional cavity initiated 
by a moving upper lid is considered. The numerical solution of the Navier-Stokes equations is sought 
on a grid with diversity velocities in the vector potential-vortex variables. New structures 
corner vortices and Taylor-GSrtler type vortices inherent to three-dimensional flows are ob- 
tained numerically. The dependence of the flow nature on the Reynolds number Re and on the 
ratio between the cavity width to its depth is investigated. 

In a number of cases spatial effects can substantially influence the incompressible fluid 
flow pattern. Consequently solutions obtained when using two-dimensional approximations dif- 
fer significantly from the experimental data. A typical example is the problem of viscous in- 
compressible fluid flow in a three-dimensional cavity with a moving upper lid. Application 
of the two-dimensional Navier-Stokes equations assumes that the cavity width L (Fig. i) is 
much greater than its depth H. The ratio of the width to the depth of channels varied between 
1 and 3 in known experiments [i, 2]. The presence of endface walls and the boundedness of 
the channel width cause considerable flow reconstruction as compared with the plane case. 
Numerical computations of viscous fluid flow in a cubic cavern are performed in [3, 4] by 
using pseudospectral and implicit multigrid methods. 

FORMULATION OF FLUID FLOW PROBLEMS IN TWO- AND THREE-DIMENSIONAL CHANNELS WITH A MOVING LID 

The problem of two-dimensional fluid flow in a cavity of rectangular section with a 
moving lid is typical for testing different numerical algorithms [5, 6]. A viscous incom- 
pressible fluid flow is examined in a rectangular domain of length B and height H. The fluid 
is at rest at the initial time, and the upper lid is set in motion at a constant velocity u 0. 
Adhsesion conditions are given on the cavern boundaries. It is required to determine the 
stationary laminar flow pattern as a function of Re. 

The problem is the following for flows in a three-dimensional cavern. The solution is 
sought in a domain D (Fig. I) 

D = {(x, y, z):O<~x<~B, O<~y<~H, O~<z~<  L}. 

The moving l i d  ( y  = O) moves f rom r i g h t  t o  l e f t .  The b o u n d a r y  c o n d i t i o n s  a r e :  u ( x ,  O, z)  = 
1, v ( x ,  O, z )  = w(x ,  O, z )  = 0 f o r  y = O; t h e  v e l o c i t y  v e c t o r  c om pone n t s  u ,  v ,  w e q u a l  z e r o  
on the remaining boundaries. The initial conditions are selected either as at rest (u = v = 
w = O) or values of the desired parameters are used for a certain smaller Re. 
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